If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-40x+72=0
a = 5; b = -40; c = +72;
Δ = b2-4ac
Δ = -402-4·5·72
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{10}}{2*5}=\frac{40-4\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{10}}{2*5}=\frac{40+4\sqrt{10}}{10} $
| 2y+1.3=5.5 | | 5.5=3x+7 | | 2u+1=8u-13 | | 7y+7y+11y=23 | | 3(x+12)-2=29 | | -12=4(x-5)= | | 3-1/2y=12 | | y=5(-0.5)+8 | | 7x-3=5x+4²-1 | | 119=17x-7 | | -2/3=p-4/9 | | 3(-0.5)+8=y | | 3/5+d5=1/4d+18 | | 3(x+9)+1=29 | | 3r+11=-19 | | x^2-5x+45=2^2 | | 4s+3=9 | | 4.3z=24.51 | | 6x=-45+-3x | | 0=21/x-6 | | -61=3-8m | | 2(8-3x)=4-(5x+12) | | 6=21/x | | 5x=17+2 | | w+15.1=12 | | 2(-5)+4y=-22 | | 3x2=21x | | 6x=-45+6x | | 15/y+2=5/2 | | 7x=-46 | | 5(3x-4)=-8 | | x^2-5x+45=0 |